Transcriptional analysis of the flagellar regulon of Salmonella typhimurium.

نویسندگان

  • K Kutsukake
  • Y Ohya
  • T Iino
چکیده

In Salmonella typhimurium, nearly 50 genes are involved in flagellar formation and function and constitute at least 13 different operons. In this study, we examined the transcriptional interaction among the flagellar operons by combined use of Mu d1(Apr Lac) cts62 and Tn10 insertion mutants in the flagellar genes. The results showed that the flagellar operons can be divided into three classes: class I contains only the flhD operon, which is controlled by the cAMP-CAP complex and is required for expression of all of the other flagellar operons; class II contains seven operons, flgA, flgB, flhB, fliA, fliE, fliF, and fliL, which are under control of class I and are required for the expression of class III; class III contains five operons, flgK, fliD fliC, motA, and tar. This ordered cascade of transcription closely parallels the assembly of the flagellar structure. In addition, we found that the fliD defect enhanced expression of the class III operons. This suggests that the fliD gene product may be responsible for repression of the class III operons in the mutants in the class II genes. These results are compared with the cascade model of the flagellar regulon of Escherichia coli proposed previously (Y. Komeda, J. Bacteriol. 170:1575-1581, 1982).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium.

Transcriptional analysis of Salmonella enterica serovar Typhimurium (S. Typhimurium) in the presence of the mammalian hormone norepinephrine revealed up-regulation of genes in the flagellar and chemotaxis regulon. Motility assays confirmed enhanced motility of wild-type S. Typhimurium in the presence of norepinephrine that could be blocked by the alpha-adrenergic antagonist, phentolamine. Furth...

متن کامل

DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor.

Biosynthesis of bacterial flagella involves the coordinated expression of 30 or more genes in several separate operons. We have recently shown that in Bacillus subtilis, the sigma 28 factor is essential for flagellar synthesis, suggesting that transcription of these genes is directly under the control of this alternative sigma factor. In enteric bacteria structural genes for flagellar, chemotax...

متن کامل

RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium.

Salmonella enterica serovar Typhimurium encounters numerous host environments and defense mechanisms during the infection process. The bacterium responds by tightly regulating the expression of virulence genes. We identified two regulatory proteins, termed RtsA and RtsB, which are encoded in an operon located on an island integrated at tRNA(PheU) in S. enterica serovar Typhimurium. RtsA belongs...

متن کامل

The Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC.

Infection of intestinal epithelial cells is dependent on the Salmonella enterica serovar Typhimurium pathogenicity island 1 (Spi1)-encoded type III injectisome system and flagellar motility. Thus, the expression of virulence and flagellar genes is subject to tight regulatory control mechanisms in order to ensure the correct spatiotemporal production of the respective gene products. In this work...

متن کامل

FliZ acts as a repressor of the ydiV gene, which encodes an anti-FlhD4C2 factor of the flagellar regulon in Salmonella enterica serovar typhimurium.

YdiV acts as an anti-FlhD4C2 factor, which negatively regulates the class 2 flagellar operons in poor medium in Salmonella enterica serovar Typhimurium. On the other hand, one of the class 2 flagellar genes, fliZ, encodes a positive regulator of the class 2 operons. In this study, we found that the FliZ-dependent activation of class 2 operon expression was more profound in poor medium than in r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 172 2  شماره 

صفحات  -

تاریخ انتشار 1990